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Abstract. A plane elastostatic problem for an elastic wedge loaded by a concentrated moment at its apex provides
an example of violation of the Saint-Venant principle for apex angles 2α larger than π . Considering the problem
for a truncated wedge, Neuber demonstrated the method of construction of an applicable solution for any apex
angles in the range π ≤ 2α ≤ 2π , despite the failure of the Saint-Venant principle. In the present paper the
particularly important case of the truncated-wedge problem is examined. The truncated wedge degenerates into a
slitted elastic plane, while a rigid circular shaft, acted upon by a torsional moment, is inserted into the plane. The
analytical solution of the mixed boundary-value problem is obtained. Numerical results turn out to be in complete
agreement with Neuber’s results for the slitted elastic plane.

Key words: Carothers paradox, concentrated couple, force transfer, homogeneous solutions, slitted elastic plane,
truncated wedge

1. Introduction

A two-dimensional problem for an elastic wedge occupying the domain 0 ≤ r < ∞, −α ≤
ϑ ≤ α in a polar-coordinate system (r, ϑ) with free surfaces ϑ = ±α and loaded by a con-
centrated moment M at its apex was solved independently quite a long time ago by Fillunger
[1], Carothers [2] and Inglis [3]. The distribution of normal (σr and σϑ ) and tangential (τrϑ )
stresses is given by

σr = − 2M sin 2ϑ

(2α cos 2α − sin 2α)r2
, σϑ = 0, τrϑ = M(cos 2ϑ − cos 2α)

(2α cos 2α − sin 2α)r2
. (1)

Traditionally, this solution is called the ‘Carothers solution’. It corresponds to the following
Airy stress function (see [1–3])

� = M(sin 2ϑ − 2ϑ cos 2α)

2(2α cos 2α − sin 2α)
, (2)

which is a certain solution of the fundamental equation of elasticity, specifically the homoge-
neous biharmonic equation.

The Carothers solution (1) satisfies the rough definition of the degenerate problem that can
be formulated as follows: while body forces are ignored, the tractions vanish on both flanks of
the unbounded wedge and produce a constant resultant moment M (with zero resultant force)
on any contour about the apex.

Fillunger [1] (see also [4]) was the first author who noticed that representation (1) has a
curious behaviour at the single, physically significant, wedge angle: it tends to infinity at the
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apex angle 2α∗ = 257◦24′, whereas a magnitude M of the moment remains finite. Later this
pathological behaviour was called [5] the ‘Carothers paradox’.

Sternberg and Koiter [5] considered the non-degenerate modified problem, in which the
couple is replaced by a statically equivalent continuous load distributed on the flanks close to
the apex. When attempting to ascertain whether the solution (1) of the degenerate problem is
asymptotically approached by some solutions of non-degenerate problems, they arrived at the
correct conclusion: the failure of the Saint-Venant principle occurs at apex angles in the range
2α∗ ≤ 2α < 2π . Moreover, in this case the idealized notion of a concentrated couple applied
to the wedge’s apex is meanlingless. However, Sternberg and Koiter [5] did not provide any
method of constructing an applicable solution.

The paper [5] gave rise to furious discussions and subsequently this fundamental problem
in the theory of elasticity has been investigated by many researchers; for a comprehensive
survey of the literature see [6]. Thus, the continuity of a stress distribution at 2α = 2α∗ was
demonstrated by Sonntag [7] from a physical-technical point of view by photoelastic experi-
ments. While the major part of these studies has either a descriptive or formal mathematical
character, including considerations of a larger class of similar phenomena, one should mention
[8–10] and comparatively recent papers [11, 12], in particular. Considering the behaviour of
the stress field in terms of a near-field geometrical effect, and a far-field stress interference
effect at the free sides of a plane-strain elastic wedge, Stephen and Wang [12] are favourably
noted by their in-depth study and the scope of their results.

A suitable engineering solution was constructed by Neuber [13]. He considered the prob-
lem in which the apex is located beyond the domain of the wedge and isolated by a circular
cylinder of radius ε which acts as ‘force-transfer surface’. Trying to select external forces
which are realizable in practice, Neuber [13] enunciated the principles of force transfer. These
principles led to the points of the intrinsic significance referring to a character of a shearing
stress distribution on the force transfer surface: the distribution is to have a constant direction
and to vary moderately. Another important proposition in [13] concerns the selection of homo-
geneous solutions (the non-zero stress distributions in the wedge which satisfy zero boundary
conditions at the flanks) for the truncated wedge. In order to realize the indicated principles
according to Neuber [13], it is sufficient to select only two homogeneous solutions, so that one
of them possesses a self-equilibrated peculiarity and another corresponds with the Carothers
solution (see Section 5). By adding these solutions Neuber [13] obtained the ‘exact’ solution
useful for practical purposes that remains continuous at any apex angle 2α of the wedge.

The energy method proposed by Ulitko [14] is based on minimum principles of elasticity
and two homogeneous solutions selected by Neuber [13]. It has the advantage that the constant
which Neuber [13] specified with inequalities is determined uniquely.

The present paper addresses the analytical solution of the truncated-wedge mixed problem
for the important particular case of a slitted elastic plane. In contrast to the problem posed by
Neuber [13], the torsional moment is applied by means of a rigid circular shaft with given
tangential displacements at its surface. Nevertheless, this statement agrees with Neuber’s
approach and it is sufficcently effective in technical aspects. The main goal of this paper is
to verify Neuber’s results for the wedge angle 2α = 2π and thus the correctness of Neuber’s
approach. Proceeding from the method of homogeneous solutions, we reduce the problem
to solving a singular infinite system of linear algebraic equations that can be brought to a
regular form. An asymptotic analysis of the singular system’s equations and a regular system’s
solution has been carried out. On the basis of a numerical solution of the regular infinite system
normal σr and shearing τrϑ stresses are plotted as functions of the angular coordinate ϑ on a
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Figure 1. Slitted elastic plane joined with the rigid shaft.

joint area between the elastic plane and the rigid shaft. Finally, the graphs display somewhat
unexpected results: these relations are found to be in complete qualitative agreement with
Neuber’s deductions.

2. Statement of the problem

A rigid shaft (cylinder) of radius ε is fitted into an elastic plane with a semi-indefinite slit
outside the circle of the same radius (see Figure 1). The shaft is rigidly joined with the plane
across the contact zone r = ε, −π ≤ ϑ ≤ π . A torsional moment M0 is acting on the
shaft which as a result rotates through a certain angle ϕ0 counterclockwise. Therefore, the
displacements in the contact zone are prescribed as

uϑ = ε · ϕ0, ur = 0, r = ε, −π ≤ ϑ ≤ π, (3)

and the sides of the slit are free of tractions

σϑ = 0, τrϑ = 0, ε ≤ r < ∞, ϑ = ±π. (4)

As is usual, we assume that the displacements vanish at infinity r → ∞.
It is easy to see that the problem defined agrees with the approach by Neuber [13] and it

is natural in its technical aspect. As is the case with Neuber’s treatment, a truncated wedge
degenerating into the slitted plane is considered. Likewise, the circular cylinder of radius
ε acts as the force-transfer surface. However, the force transfer itself should be discussed
more accurately. The boundary conditions (3) at the surface r = ε (the unclosed circle) are
prescribed with the displacements of its points which are dependent on the angle ϕ0 of rotation
of the shaft1 . Hence the solution of the problem will be a function of ϕ0 and is not related to the
torsional moment M0 explicitly. In other words, it is a matter of displacements transfer rather
than of force transfer. The foregoing formulation of the problem, in which a force condition
(i.e., the condition of the static equilibrium under the action of the moment) is replaced by
the geometrical condition (3), generalizes to a certain extent Neuber’s principles. It is obvious
that there is a one-to-one correspondence between the angle of rotation ϕ0 and the torsional
moment M0 acting on the shaft. Therefore, full qualitative agreement with Neuber [13] is

1Note, that in [13] the boundary conditions at r = ε are not formulated explicitly.
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expected and it is worth considering the force transfer but the discussions take the following
order: first on the basis of the displacements specified on the force-transfer surface r = ε the
stressed condition is to be determined throughout the elastic plane, particularly in the contact
zone r = ε, −π ≤ ϑ ≤ π and afterwards one can evaluate the moment M0 that actually
raised the specified displacements and hence the stressed condition on the whole system.

Completing this section, we note that by means of the formula

M0 = −
∫ π

−π

τrϑ |r=ε · ε2dϑ (5)

that follows from the integral equilibrium conditions for the shaft, one can evaluate the tor-
sional moment which is to be applied to the shaft when it is rigidly joined to the elastic plane,
so that it will rotate through the given angle ϕ0.

3. Method of solution

3.1. HOMOGENEOUS SOLUTIONS FOR THE SLITTED PLANE

On the basis of the general solution of the antisymmetric problem for the plane elastic wedge
(see Uflyand [15, pp. 124–128]) it is easy to derive the particular solution of the fundamental
equations of plane elasticity in the form

et σr

2G
= −

[
s + 3

s − 1
c(s) sin(s + 1)ϑ + d(s) sin(s − 1)ϑ

]
e−st ,

et σϑ

2G
= [

c(s) sin(s + 1)ϑ + d(s) sin(s − 1)ϑ
]
e−st ,

et τrϑ

2G
=

[
s + 1

s − 1
c(s) cos(s + 1)ϑ + d(s) cos(s − 1)ϑ

]
e−st ,

ur

ε
= 1

s

[
3 − 4ν + s

s − 1
c(s) sin(s + 1)ϑ + d(s) sin(s − 1)ϑ

]
e−st ,

uϑ

ε
= 1

s

[
3 − 4ν − s

s − 1
c(s) cos(s + 1)ϑ − d(s) cos(s − 1)ϑ

]
e−st ,

(6)

where previously the polar coordinate r was replaced by the new variable t as follows

r = ε · et , ε ≤ r < ∞, 0 ≤ t < ∞. (7)

So far the parameter s, which may take on complex values in general, is undefined, whereas
two arbitrary functions c(s), d(s) of s are to be determined from the boundary conditions. Let
us choose values to the parameter s to meet the boundary conditions (4).

The first condition in (4) provides at once the relation as d(s) = −c(s). In order to satisfy
the second one, s is to be determined from

cos πs = 0. (8)

That is, sk = k − 1/2, k = 0, 1, . . . ,∞. Hereafter it is convenient to denote

c(sk)

sk(sk − 1)
with ck, i.e., c

(
k − 1

2

) =
(
k − 3

2

)(
k − 1

2

)
ck.
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Therefore, summing over all values of k, the following homogeneous solution has been ob-
tained, e.g., for displacements at the surface r = ε (t = 0)

u(1)
r

ε

∣∣∣∣
t=0

=
∞∑

k=0

ck

[(
(3 − 4ν) +

(
k − 1

2

))
sin(k + 1

2
)ϑ −

(
k − 3

2

)
sin(k − 3

2
)ϑ

]
,

u
(1)
ϑ

ε

∣∣∣∣
t=0

=
∞∑

k=0

ck

[(
(3 − 4ν) −

(
k − 1

2

))
cos(k + 1

2
)ϑ +

(
k − 3

2

)
cos(k − 3

2
)ϑ

]
.

(9)

On the other hand, the condition τrϑ |ϑ=±π = 0 in (4) provides at once the relation c(s) =
−s − 1

s + 1
d(s). In a similar way, one can establish the following homogeneous solution for the

displacements at the surface r = ε (t = 0)

u(2)
r

ε

∣∣∣∣
t=0

= −
∞∑

n=1

[(
(3 − 4ν) + (n − 1)

)
dn−1 − (n + 2)dn+1

]
sin nϑ,

u
(2)
ϑ

ε

∣∣∣∣
t=0

= −2d1 −
∞∑

n=1

[(
(3 − 4ν) − (n − 1)

)
dn−1 + (n + 2)dn+1

]
cos nϑ,

(10)

with the notations

d(sn)

sn(sn + 1)
= d(n)

n(n + 1)
= dn,

where sn = n, n = 1, 2, . . . ,∞ has been determined from

sin πs = 0 (11)

to satisfy σϑ |ϑ=±π = 0 in conditions (4). In Equation (10) d0 denotes an arbitrary constant
that is associated with a (antisymmetric) rigid-body displacement in the y-direction.

Thus, we have constructed a set of ‘homogeneous solutions’ confirming to the equilibrium
of an elastic plane with a semi-indefinite crack (slit). These solutions retain the sides of the
crack free of tractions. The mentioned set consists of two independent subsets which are
defined by the roots of Equations (8) and (11), respectively. An independent particular solution
complies with each root sk of Equation (8) or sn of Equation (11). Due to the factor e−st the
corresponding stress distributions decay exponentially with distance from the force-transfer
surface r = ε (t = 0). All of them, except the distribution raised by the root sn = 1, are
self-equilibrated. See [12] for a detailed analysis of self-equilibrated load effects as against
loads constituting the non-zero stress resultants.

Note that one can use the technique suggested by Lourje [16] and determine values of s

from the following eigenequation

(sin 2sα − s sin 2α)|α=π = 0, i.e., sin 2sπ = 0. (12)

To obtain Equation (12) one should consider a system of two linear algebraic equations for
the unknowns c(s) and d(s) which follows from the boundary conditions (4). By putting the
determinant of the system equal to zero to guarantee the existence of a non-trivial solution,
we immediately come to Equation (12). Nevertheless, it is easy to see that the homogeneous
solutions remain the same.
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3.2. FUNCTIONAL EQUATIONS FOR THE BOUNDARY VALUE PROBLEM

In order to satisfy the boundary conditions (3) on the force transfer surface, the specified
homogeneous solutions may be applied, since they produce no effect on the sides of the crack.
As mentioned before, the solutions (9) and (10) are independent. Therefore, it is necessary for
completeness to add them together. Hence, the boundary conditions (3) at r = ε (t = 0) take
the form

ur

ε

∣∣∣∣
t=0

= u(1)
r + u(2)

r

ε

∣∣∣∣
t=0

= 0,
uϑ

ε

∣∣∣∣
t=0

= u
(1)
ϑ + u

(2)
ϑ

ε

∣∣∣∣
t=0

= ϕ0 = const. (13)

Substitution of the expressions (9) and (10) in (13) leads to the functional equations for the
boundary-value problem. They may be used to determine the unknowns ck and dn.

It is essential to note that the completeness of the system of homogeneous solutions which
we employed is an intricate fundamental problem of elasticity. However, it is worth mention-
ing that it is positively settled in statical and dynamical problems of elasticity (see [18]).

3.3. INFINITE SINGULAR SYSTEM

When satisfying the boundary conditions on the force-transfer surface r = ε (t = 0), natural
difficulties inevitably arise. They are attributable to the fact that the system of homogeneous
solutions is not orthogonal. However, we have the functions sin, cos of half-integer arguments
in (9) and the functions sin, cos of integer arguments in (10). Therefore, one can employ the
following formulae∫ π

0
sin

(
k + 1

2

)
ϑ · sin nϑ dϑ = (−1)n+k+1 n

n2 −
(
k + 1

2

)2 ,

∫ π

0
cos

(
k + 1

2

)
ϑ · cos nϑ dϑ = (−1)n+k+1 k + 1

2

n2 −
(
k + 1

2

)2

(14)

to convert the functional equations (13). It is clear that similar conversions are impossible for
apex angles 2α differing from 2π .

Thus, in view of Equations (14), we obtain from the conditions (13) the following infinite
system of coupled equations

(
2(1 − 2ν) + n

)
dn−1 − (n + 2)dn+1 = (−1)n · n · 2

π
×

×
∞∑

k=0

(−1)k ck

2(1 − 2ν) +
(
k + 1

2

)
(
k + 1

2

)2 − n2
−

(
k − 3

2

)
(
k − 3

2

)2 − n2

 ,

(
4(1 − ν) − n

)
dn−1 + (n + 2)dn+1 = (−1)n · n · 2

π
×

×
∞∑

k=0

(−1)k ck

(
k + 1

2

)4(1 − ν) −
(
k + 1

2

)
(
k + 1

2

)2 − n2
+

(
k − 3

2

)2(
k − 3

2

)2 − n2

 , n = 1, 2, . . . ,

(15)

in particular for n = 0:
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2d1 + ϕ0 = −4(1 − ν) · 1

π
·

∞∑
k=0

(−1)kck

k + 1
2

. (16)

Now let us eliminate the terms dn−1 and dn+1 between Equations (15) and (16). With that
end in mind one can solve the system of Equations (15) for dn−1 and dn+1. Then it should be
accounted for that dn−1 and dn+1 are to be equal if one substitutes n+2 for n in the expression
obtained for dn−1. Omitting the details of these tedious computations, we write immediately
the results as follows:

∞∑
k=0

ãk0 Xk = 1 , n = 0 ,

∞∑
k=0

akn Xk = 0 , n ≥ 1 , (17)

where a change of unknowns has been performed

(−1)kck = −(3 − 4ν)
π

2
ϕ0 Xk (18)

and coefficients are determined as follows

ãk0 = 2(1 − ν)(3 − 4ν)

k + 1
2

+ 3 − 4ν

k − 3
2

+ 3

k + 5
2

− 2

k + 1
2

,

akn = 2(3 − 4ν)

k − 3
2 − n

+ (n + 2)

[
n + 3

k + 5
2 + n

− n + 2

k + 1
2 + n

]

−(n − 1)

[
n + 1

k + 1
2 + n

− n

k − 3
2 + n

]
− (3 − 4ν)2

k + 1
2 + n

.

(19)

Anticipating a later results, we note that the infinite system of Equations (17) is singular
and the substantiation of this fact is cited below.

As follows from the very statement of the problem, the stresses must increase without
bound at the corner points r = ε, ϑ = ±π . The pattern of this singularity is known (see [15,
pp. 149–153]). Hence we should set up the following asymptotic behaviour of the unknowns
Xk

Xk ∼ X
(as)
k , k → ∞, with X

(as)
k = Cγ

k 1+γ
, (20)

where 0 < γ < 1, Cγ is a real constant. The values of γ and Cγ are to be determined from
the subsequent solution.

Allowing for the values of the coefficients akn in (19) and for exact sums (Profs J. Boersma,
N. G. de Bruijn, private communication),

∞∑
k=1

1

k 1+γ
· 1

k + (n + a)
= − π

sin πγ
· 1

(n + a) 1+γ
+

∞∑
m=0

(−1)m ζ(1 + γ − m)

(n + a)m+1
,

∞∑
k=1

1

k 1+γ
· 1

k − (n + a)
= π

cot πγ − cot πa

(n + a) 1+γ
−

∞∑
m=0

ζ(1 + γ − m)

(n + a)m+1
,

(21)

where ζ(z) is the Riemann ζ function, one may establish the following asymptotic equality
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Cγ

∞∑
k=1

akn

k 1+γ
∼ − 16(1 − ν)2 ζ(1 + γ )

n
Cγ

− 4π

sin πγ
· Cγ

n 1+γ

[
(3 − 4ν) sin2 πγ

2
+ γ 2 − 4(1 − ν)2

]
, n → ∞

(22)

It is obvious that the first term on the right-hand side of the equality (22) diminishes loga-
rithmically. This decay is less rapid than required for regularity. Thus, the system of Equa-
tions (17) is singular.

3.4. INFINITE REGULAR SYSTEM

Putting Xk = X
(as)
k , k ≥ N , due to the asymptotic behaviour (20), we transform Equa-

tions (17) into the form

∞∑
k=0

akn Xk = a 0n X0 +
N−1∑
k=1

akn

(
Xk − X

(as)
k

)
+

∞∑
k=1

akn X
(as)
k , n ≥ 1. (23)

Since displacements are to be continuous in the boundary conditions (and they are), the terms
on the left-hand side of Equation (17) must not decrease less rapidly than 1/n2 when n → ∞.
Hence, in view of Equations (22), (23) and the asymptotic behaviour of akn,

akn ∼ − 16(1 − ν)2

n
, n → ∞ (for fixed k), (24)

we have

X0 +
N−1∑
k=1

(
Xk − X

(as)
k

)
= − ζ(1 + γ ) Cγ , (25)

(3 − 4ν) sin2 πγ

2
+ γ 2 − 4(1 − ν)2 = 0. (26)

When the Poisson ratio ν is given, one can determine the value of γ which is necessary for
the asymptotic behaviour (20) from the transcendental Equation (26). As an example, when
ν = 1/3, the correct root for 0 < γ < 1 is γ = 0·69.

Thus, the system of Equations (17) becomes regular in terms of expression (20) when
the conditions (25) and (26) are satisfied, otherwise the problem is unphysical. Making the
substitution of the unknowns as

Xk − X
(as)
k = Yk, 1 ≤ k ≤ N − 1, (27)

and rejecting in the system (23) the N +1, N +2, . . . equations, we obtain the following finite
system

ã 00 X0 +
N−1∑
k=1

ãk0 Yk + Cγ

∞∑
k=1

ãk0

k 1+γ
= 1,

a 0n X0 +
N−1∑
k=1

akn Yk + Cγ

∞∑
k=1

akn

k 1+γ
= 0, n = 1, 2, . . . , N

(28)
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The finite system of Equations (28) involves N + 1 unknowns, i.e., X0, Y1, . . . , YN−1, Cγ and
the same number of equations and it may be used for an approximate solution of the regular
infinite system. In fact, this approach to solving the infinite system of Equations (17) is the
traditional method of reduction. All numerical results are discussed in Section 4.

3.5. EXPRESSIONS FOR STRESSES IN THE CONTACT ZONE

Similar to the expressions (9), (10) and (13), the complete solution for the stresses σr , τrϑ can
be written at the surface r = ε (t = 0) as

σr

2G

∣∣∣∣
t=0

=
∞∑

n=1

[
(n − 1)(n + 2)dn−1 − (n + 1)(n + 2)dn+1

]
sin nϑ

−
∞∑

k=0

(
k − 1

2

)
ck

[(
k + 5

2

)
sin(k + 1

2
)ϑ −

(
k − 3

2

)
sin(k − 3

2
)ϑ

]
,

τrϑ

2G

∣∣∣∣
t=0

= 2d1 −
∞∑

n=1

[
n(n − 1)dn−1 − (n + 1)(n + 2)dn+1

]
cos nϑ

+
∞∑

k=0

(
k − 1

2

)
ck

[(
k + 1

2

)
cos(k + 1

2
)ϑ −

(
k − 3

2

)
cos(k − 3

2
)ϑ

]
.

(29)

By eliminating dn−1 and dn+1 between the above expressions (29) (see Subsection 3.3), by
means of Equations (18), (20) and (27) and the expansions

sin
(
k + 1

2

)
ϑ = (−1)k

π

∞∑
n=1

(−1)n

[
1

k + 1
2 − n

− 1

k + 1
2 + n

]
sin nϑ,

cos
(
k + 1

2

)
ϑ = (−1)k

π
· 1

k + 1
2

+ (−1)k

π

∞∑
n=1

(−1)n

[
1

k + 1
2 − n

+ 1

k + 1
2 + n

]
cos nϑ,

we can write Equations (29) as

σr

2G

∣∣∣∣
t=0

=
∞∑

n=1

(−1)n σn · sin nϑ,

τrϑ

2G

∣∣∣∣
t=0

= τ0 +
∞∑

n=1

(−1)n τn · cos nϑ,

(30)

where

σn = −(3 − 4ν) ϕ0

[
α 0n X0 +

N−1∑
k=1

αkn Yk + Cγ

∞∑
k=1

αkn

k 1+γ

]
, n ≥ 1,

τn = −2(1 − ν)(3 − 4ν) ϕ0

[
β 0n X0 +

N−1∑
k=1

βkn Yk + Cγ

∞∑
k=1

βkn

k 1+γ

]
, n ≥ 1,

τ0 = − ϕ0

[
β̃ 00 X0 +

N−1∑
k=1

β̃k0 Yk + Cγ

∞∑
k=1

β̃k0

k 1+γ

]
,

(31)
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with the coefficients

αkn = (1 − 2ν)
n + 1

k + 1
2 + n

− (n + 1)

(
n − 1

k + 1
2 − n

− n

k − 3
2 − n

)

+ 2(1 − ν)

3 − 4ν
(n − 1)

(
n + 1

k + 1
2 + n

− n

k − 3
2 + n

)
,

βkn = n + 1

k + 1
2 + n

+ n − 1

3 − 4ν

(
n + 1

k + 1
2 + n

− n

k − 3
2 + n

)
,

β̃k0 = 3 − 4ν

k − 3
2

+ 3

k + 5
2

− 2

k + 1
2

.

(32)

The conditions (25) and (27) permit us to establish the following asymptotic behaviour for
the coefficients of the series (30)

σn ∼

Sγ

nγ
, τn ∼

Tγ

nγ
, n → ∞ , (33)

with the notations

Sγ = π

sin πγ
· Cγ ϕ0

[
(1 − 2ν)(3 − 4ν) + (1 + 2γ )

(
(3 − 4ν) cos πγ − 2(1 − ν)

)]
,

Tγ = 2(1 − ν)
π

sin πγ
· Cγ ϕ0

[
(3 − 4ν) − (1 + 2γ )

]
.

(34)

As emphasized above, the normal stresses as well as that representing shearing increase (or
decrease) without bound near the corner points of the contact surface between the rigid shaft
and the elastic plane, i.e., at r = ε, ϑ = ±π . To estimate the asymptotic behaviour of the
stresses in these singular points, we use the following asymptotic equalities2 when ϑ → ±π

∞∑
n=N

(−1)n

nγ
cos nϑ ∼

π2

(2π)γ 
(γ ) cos πγ

2

· 1(
π2 − ϑ2

)1−γ
,

∞∑
n=N

(−1)n

nγ
sin nϑ ∼ ∓ π2

(2π)γ 
(γ ) sin πγ

2

· 1(
π2 − ϑ2

)1−γ
.

(35)

Finally, with the aid of Equations (30) and the asymptotic expressions (33), (35) we obtain
the asymptotic expansions of σr and τrϑ at the surface r = ε for ϑ → ±π

σr

2G

∣∣∣∣
ϑ→±π

∼ ∓
(π

2

)γ Sγ


(γ ) sin πγ

2

· 1(
1 − ϑ2

π2

)1−γ
,

τrϑ

2G

∣∣∣∣
ϑ→±π

∼

(π

2

)γ Tγ


(γ ) cos πγ

2

· 1(
1 − ϑ2

π2

)1−γ
,

(36)

2To derive these relations, one should use the Fourier expansions of the functions 1/
(
π2 − ϑ2

)1−γ
and

ϑ/
(
π2 − ϑ2

)1−γ
in terms of sin nϑ , cos nϑ on the interval [−π,π].
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where Sγ and Tγ are defined by Equations (34).
In conclusion, some remarks concerning the stress behaviour at the points r = ε, ϑ = ±π

should be made. First of all the order of the singularity is to be distinguished. The stress field
diverges as 1/(1 ∓ ϑ/π)1−γ when ϑ → ±π ; it depends on the elasticity parameters of the
medium. Contrary to fracture mechanics, this is not the inverse-square-root singularity at the
crack tip.

Moreover, there is a certain inconsistency in the shear-stress behaviour at the location r =
ε, ϑ = ±π . It depends on the path by which these points are approached – from the side of
the elastic medium or from the traction-free slit region. The stresses are singular in the former
case and must be zero due to (4) in the latter. This character of the stress field is inevitable. It
occurs in a number of other problems, including bonded contact between elastic bodies and
rigid boundaries. The introduction of singular points, in which characteristics of the stress field
are uncertain and fundamentally different in their close proximity, promotes field analysis (see
Grinchenko and Ulitko [19]).

4. Numerical results

The results of our calculations of the stress distribution at the surface r = ε are presented
in Figures 2 and 3. To plot these graphs we used the expressions (30–32). The values of X0,
Y1, . . . , YN−1, Cγ were evaluated by solving the reduced infinite system (28). Here the cases
N = 30 and N = 100 are illustrated when Poisson’s ratio is ν = 1/3. The infinite sums in
Equations (28), as well as in the expressions (30), (31), were calculated with a fixed accuracy.
The value of Cγ turns out to be sensitive to changing the number of equations in the reduced
system (28).

Note, that the pattern of stress distributions for other values of Poisson’s ratio is analogous
to Figures 2 and 3. Moreover, it is not essential what exact value of N we choose and these
illustrations are sufficient for our references3 .

Figures 2 and 3 represent the distributions of stresses for N = 30 and N = 100, re-
spectively. In Figures 2(a) and 3(a) the normal stress σr as well as that for shearing τrϑ are
drawn on the large scale of the vertical axis. In Figures 2(b) and 3(b) only τrϑ is scaled
down. Remembering that the antisymmetric case is considered, we have plotted the stress
distributions on the interval 0◦ ≤ ϑ ≤ 180◦. That is, in order to obtain the stress field for ϑ in
the range −180◦ ≤ ϑ ≤ 0◦ one should map the σr - and τrϑ -curves symmetrically about the
origin and about the vertical axis, respectively.

Moreover, it is relevant for engineering purposes to compare torsional stiffnesses of the
rigid disk inserted into the slitted infinite plane and the same inserted into an intact plane.
This way one can assess the influence of the slit on the torsional stiffness. Thus, in view of
Equation (5), on the basis of calculations for ν = 1/3 and N = 100, the following relation was
determined: M0 = 12·27 Gϕ0ε

2. For the intact plane it is of the form M = 4π Gϕ0ε
2. Hence,

in the case with the slit the torsional stiffness of the disk slightly decreases in comparison with
the intact plane. This inference was predicted intuitively.

3It should be mentioned that, on the basis of numerical techniques, we designed a program which allows to solve
the system (28) for arbitrary values of ν and N .
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Figure 2. Stress distribution along the force-transfer surface calculated for N = 30: (a) dashed and solid lines
represent normal and shearing stresses, respectively; (b) shearing stress scaled down.

Figure 3. Stress distribution along the force-transfer surface calculated for N = 100: (a) dashed and solid lines
represent normal and shearing stresses, respectively; (b) shearing stress scaled down.

5. Discussion

Let us recall the solution obtained by Neuber [13] for the slitted plane

σr = M

2π · r2

{
−2 sin 2ϑ + B

√
r

ε

[
sin

ϑ

2
− 7 sin

3ϑ

2

]}
,

σϑ = M

2π · r2

{
B

√
r

ε

[
− sin

ϑ

2
− sin

3ϑ

2

]}
,

τrϑ = M

2π · r2

{
cos 2ϑ − 1 + B

√
r

ε

[
cos

ϑ

2
+ 3 cos

3ϑ

2

]}
,

(37)

where B = −√
3/9. See Figure 4 for the corresponding stress distribution. This solution

contains only two components. They are homogeneous solutions and the former agrees with
the Carothers solution for α = π , while the latter possesses the self-equilibrated peculiarity
about the origin. The solution (29) involves analogous terms. They contain, respectively, the
coefficients d1 and c1 (see Subsection 3.1).

Among all the homogeneous solutions Neuber selected only two. Why should one take
into account not three, four, . . . homogeneous solutions, but just these two? In this paper we
checked this approach for a specific case.
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Figure 4. Stress distribution along the force-transfer surface for the slitted elastic plane: (a) according to Neuber
[13]; (b) according to the energy method after Ulitko [14], where B = −0·133.

Comparing the pictures in Figures 2 and 3 with corresponding results by Neuber [13]
(see Figure 4), we may conclude that they are in complete qualitative agreement. It refers in
particular to the behaviour of shearing stress. Its distribution fully complies with the principles
of force transfer after Neuber [13] and it is actually smoother than in Figure 4. Moreover, one
can reveal the trend towards fairing the curve of τrϑ due to an increase of N . This tendency
remains when N is larger than 100. However, even for N > 100, no prominent variations of
the stress distribution are noticeable.

Thus, Neuber’s results based on his principles of force transfer are not at variance with
ours. They would be invaluable if they were backed up by minimum principles, that is, if
addition of every next homogeneous solution to the solution (37) would cause the strain energy
of the truncated wedge to increase. But further calculations contradict this expectation.

6. Conclusions

Neuber [13] demonstrated the method of constructing the practically applicable solution of
the wedge problem only by means of two roots of the eigenequation (12), despite the failure
of the Saint-Venant principle. Equations like (12) are thoroughly examined in the work [15].
First of all, they have infinitely many roots, which are complex in general. Due to minimum
principles of elasticity, one may take account of those, which render the potential energy of the
elastic domain finite. The energy method is based on these principles too, but it again employs
two homogeneous solutions selected by Neuber [13].

The proposed method of homogeneous solutions is a powerful tool for solving many
problems of elasticity for bounded elastic domains, as in the problem of thick plates (see
also Lourje [16]). In order to realize it, we accounted for all the roots of Equation (12)
and corresponding homogeneous solutions which satisfy the minimum principles. Therefore,
our solution includes every possible self-equilibrating systems and hence we called it the
exact solution by right. Despite the fact that most of the transformations are cumbersome
and tedious, the final results appear rather transparent for further numerical and analytical
simulations. In particular, the distributions of stresses along the force-transfer surface were
obtained by numerical calculations based on the reduction method. These graphs confirmed
the correctness of Neuber’s approach which is elementary enough and requires no special
explorations.
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In conclusion, it should be noted that, unfortunately, the technique of reducing the boundary-
value problem to the infinite system of linear algebraic equations suggested in this paper
appears useless for other wedge angles, since it is impossible to convert one subset of homo-
geneous solutions with respect to another. But we suppose that for apex angles in the range
2α∗ ≤ 2α ≤ 2π the state of things will be similar to the slitted elastic plane.
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